SI Analysis & Measurement as easy as mobile apps ISD, ADK, X2D2 Ching-Chao Huang huang@ataitec.com ### **Outline** - Can SI tools be made like mobile apps? - Introduction of AtaiTec SI software - Most applications in ~3 clicks. - In-Situ De-embedding (ISD) - Fix causality problems commonly found in other de-embedding tools. - Advanced Design Kit (ADK) - Many mobile-apps-like SI tools in one place: S-param quality, TDR/TDT, eye diagrams, compliance testing, ... - Advanced 2D solver (X2D2) - Model and extract DK, DF and roughness. #### If it takes more than 5 seconds to do any of these, it is too long... ### **Confucius said...** The mechanic that would perfect his work must first sharpen his tools. 工欲善其事,必先利其器。 To have a good job, find a good boss and good co-workers. 居是邦也,事其大夫之賢者,友其士之仁者。 Confucius 551 BC - 479 BC ### "Sharp" tools from AtaiTec Mobile-apps-like SI software increases productivity ## **AtaiTec SI software** *Most applications in ~3 clicks* - In-Situ De-Embedding (ISD) - A cost-saving alternative to replace TRL calibration. - Simple Only one 2x through test coupon is needed. - Save \$\$\$ Save SMAs, board material, and time. - Accurate Remove fixture crosstalk; causal DUT results. - Advanced Signal Integrity Design Kits (ADK) - TDR/TDT, passivity & causality correction, eye diagrams, S-to-Spice, scope de-embedding and a lot more. - Complex SI operations in one mouse click. - X2D2 - Accurate 2D solver for modeling causal dielectric and surface roughness. - Extract material property with ISD. # In-Situ De-embedding (ISD) Causal by construction - The goal is to de-embed the fixture effect and extract DUT data. - ISD uses "2x thru" or "1x open / 1x short" as reference and de-embed <u>fixture's actual impedance</u> through optimization. In Situ - De-embedding is made easy as 1-2-3. - Save SMAs, board material and time. # Why do most de-embedding tools give causality error Most tools use test coupons directly for de-embedding, so difference between actual fixture and test coupons gets piled up into DUT results. ^{*} http://www.edn.com/electronics-blogs/test-voices/4438677/Software-tool-fixes-some-causality-violations by Eric Bogatin ### What is "2x thru" "2x thru" is 2x lead-ins or lead-outs. 2 sets of "2x thru" are required for asymmetric fixture. ### What is "1x open / 1x short" "1x open / 1x short" is useful when "2x thru" is not possible (e.g., connector vias, package, ...). ### Why ISD is more accurate and saves \$\$\$ #### TRL calibration board - More board space Multiple test coupons are required. - Test coupons are used directly for deembedding. - All difference between calibration and actual DUT boards gets piled up into DUT results. - Expensive SMAs, board materials (Roger) and tight-etching-tolerance are required. - Impossible to guarantee all SMAs and traces are identical (consider weaves, etching, ...) - Time-consuming manual calibration is required. - Reference plane is in front of DUT. ### **ISD** test coupon - Only one 2x thru test coupon is needed. - Test coupon is used only for reference, not for direct de-embedding. - Actual DUT board impedance is deembedded. - Inexpensive SMAs, board materials (FR4) and loose-etching-tolerance can be used. - ECal can be used for fast SOLT calibration. - Reference plane is in front of SMA. - De-embedding is made easy as 1-2-3 with only two input files: 2x thru and DUT board (SMA-to-SMA) Touchstone files. - More information: Both de-embedding and DUT files are provided as outputs. ## **Example 1: Mezzanine connector** *ISD vs. TRL* In this example, we will use ISD and TRL to extract a mezzanine connector and compare their results. *Courtesy of Hirose Electric #### **DUT results after ISD and TRL** Which one is more accurate? TRL gives too many ripples in return loss (RL) for such a small DUT. # Converting S parameter into TDR/TDT shows non-causality in TRL results Rise time = 40ps (20/80) ## Zoom-in shows non-causal TRL results in all IL, RL, NEXT and FEXT TRL causes time-domain errors of 0.38% (IL), 25.81% (RL), 1.05% (NEXT) and 2.86% (FEXT) in this case*. ### **How did ISD do it?** Through optimization, ISD de-embeds fixture's impedance exactly, independent of 2x thru's impedance. # TRL can give huge error in SDD11 even with small impedance variation* ISD is able to de-embed fixture's differential impedance with only a single-trace 2x thru. ## **Example 2: USB type C mated connector** *ISD vs. AFR* Good de-embedding is crucial for meeting compliance spec. 2x thru **Fixture** #### **DUT results after ISD and AFR** Which one is more accurate? AFR gives too many ripples in return loss (RL) for such a small DUT. Non-causal ripples # Converting S parameter into TDR/TDT shows non-causality in AFR results Counterclockwise phase angle is another indication of non-causality. # De-embedding affects pass or fail of compliance spec. ISD improves IMR and IRL (from compliance tool). **ISD** Value (Pass/Fail) -0.4ILfit@2.5GHz -0.6ILfit@5.0 GHz -0.8 ILfit@10.0GHz -45.1 **IMR** -23.2IRI -41.5INEXT -49.2**IFEXT** -23 SCD12/SCD21 ### **AFR** | | Value | | |---------------|-------------|------| | | (Pass/Fail) | Spec | | ILfit@2.5GHz | -0.4 | -0.6 | | ILfit@5.0 GHz | -0.6 | -0.8 | | ILfit@10.0GHz | -0.9 | -1.0 | | IMR | -43.7 | -40 | | IRL | -20.8 | -18 | | INEXT | -41.5 | -44 | | IFEXT | -49.3 | -44 | | SCD12/SCD21 | -23.2 | | | | | | **FAIL** ## **Example 3: Resonator** *ISD vs. AFR vs. simulation* Good de-embedding is crucial for design verification (i.e., correlation) and improvement. ### SDD11 ### ISD correlates with simulation much better ### SCC11 ### ISD correlates with simulation much better ## Advanced SI Design Kits (ADK) Many mobile-apps-like SI tools in one place - Complex SI operations, from causality correction to eye diagrams, TDR/TDT, scope de-embedding, spectral analysis, ... in a few mouse clicks. - Everything you want to do with S parameters in one place. - Increase productivity. ### **Find connection** - Quickly examine [S]. - Identify from-to connection. - Identify near and far ends. - Compute quality metrics. ``` Figure 11 File AtaiTec Tools The ``` ``` File name: D:\Demo\Examples\ISD_TRL.s4p Total 800 points from 0.025 GHz to 20 GHz with 50 ohm Zref. S-parameter quality (min.): Reciprocity metric = 0.999992 for S(4,1) Passivity metric = 0.999239 for S(1,1) Causality metric = 0.556122 for S(1,1) From-To Connections: Port 1 -> 3 Port 2 -> 4 ``` ## **Passivity & causality correction** - Multiple ways to fill in DC. - Separate signal and ground resistance for DC coupling in point-to-point nets. - Resistive circuit for TDR @50 ps (20/80), shifted by 1ns ## [S] to TDR & TDT - Built-in filter & IFFT. - Single-ended, differential or common mode. - Step, single-bit or impulse response. - Correlated with TDR equipment. ### Plot [S] and time-domain curves ## **Channel optimization** - [S] to eye diagram, waveform or spectrum. - Single-ended, differential or mixedmode. - With or without NEXT and FEXT. - With or without TX FFE, RX CTLE and DFE. - Fixed or PRBS patterns. - NRZ or PAM4 ## Scope embedding & de-embedding - Plot scope data in waveform, eye diagram or spectrum. - Embed and/or de-embed [S] from scope data. Original 0.25 0.2 0.15 0.05 0 After de-embedding ataited ### **X2D2** ### Advanced 2D solver for surface roughness modeling - Accurate 2D BEM field solver with causal dielectric and effectiveconductivity surface roughness models. - Compute impedance, RLGC matrices and S parameters. - Create Touchstone file and frequency-dependent W-element model. ### Causal dielectric model - Wideband Debye (or Djordjevic-Sarkar) model - Need only four variables: ε_{∞} , $\Delta \varepsilon$, m_2 , m_1 $$\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon \cdot \frac{1}{m_2 - m_1} \cdot \log_{10} \left(\frac{10^{m_2} + i \cdot f}{10^{m_1} + i \cdot f} \right)$$ $$= \varepsilon_r \cdot (1 - i \cdot \tan \delta)$$ $$\varepsilon_{\infty} = 3.35$$, $\Delta \varepsilon = 0.15$, $m_2 = 10$, $m_1 = 14.5$ ## Surface roughness model • Effective conductivity (by G. Gold & K. Helmreich at DesignCon 2014) needs only two variables: σ_{bulk} , R_q | Parameter | Description | Standard | |-----------|---------------------------|------------------------------| | R_q | root mean square | DIN EN ISO 4287 | | R_a | arithmetic average | DIN EN ISO 4287, ANSI B 46.1 | | R_k | core roughness depth | DIN EN ISO 13565 | | R_z | average surface roughness | DIN EN ISO 4287 | Table 1: Statistical parameters to describe surface roughness • Numerically solving $\nabla^2 \overline{B} - j\omega\mu\sigma\overline{B} + \frac{\nabla\sigma}{\sigma} \times (\nabla \times \overline{B}) = 0$ and equating power to that of smooth surface gives σ_{eff} - ❖ Simple - Work well with field solver - Give effect of roughness on all IL, RL, NEXT and FEXT # Using ISD and X2D2 to extract material property - Measure two traces of different length (L1 & L2). - Use ISD to extract trace-only data. - Extract causal DK, DF and surface roughness models by running X2D2 to fit IL in both magnitude and phase. ## **Example** Two differential stripline traces of different length (L1 & L2) are measured. ## Using ISD to extract trace-only data ISD uses L1 as 2x thru and matches L2 impedance to extract DUT (6" trace). 37 ## Using X2D2 to compare different models ### Optimized model gives the desired material property - Model A (manufacturer's) DK=3.51, DF=0.004, $\sigma_{bulk} = 5.8 \times 10^7 \text{ s/m}, \ R_q = 0$ - Model B (intermediate) DK=3.51, DF=0.004, $\sigma_{bulk} = 5.8 \times 10^7 \text{ s/m}, \ R_a = 1 \ \mu m$ - Model C (optimized) $\varepsilon_{\infty} = 3.35$, $\Delta \varepsilon = 0.15$, $m_2 = 10$, $m_1 = 14.5$ $\sigma_{bulk} = 5.8 \times 10^7 \, \text{s/m}$, $R_a = 0.8 \, \mu m$ Fitting differential IL in both magnitude and phase # Automated extraction of DK, DF, roughness and 2D cross section - Built-in templates for microstrips and striplines. - Other templates (such as cable) can be easily added. Easily create trace S param for any length and to any frequency. a sicui. ## RL is crucial for DK extraction Use ISD instead of TRL results for extraction TRL gives non-physical RL and will be impossible to fit. Matching RL is crucial because it affects DK and cross section (and therefore length, DF and roughness). ### **Summary** - AtaiTec's mobile-apps-like signal integrity software helps improve productivity with most applications in ~3 clicks. - ISD fixes causality problems commonly found in de-embedding. - ADK is a one-stop shop for many SI applications. - X2D2 models and extracts DK, DF and surface roughness. ## **Appendix** 1x Open De-embedding # ISD's new 1x open de-embedding needs only one 1x open test coupon ## ISD can reconstruct 1x thru's IL and RL from 1x open's RL # ISD's "in-situ" technology matches the fixture's impedance for de-embedding # IL and RL extracted by ISD match the actual values very well