

Material Property Extractor

Ching-Chao Huang huang@ataitec.com

February 1, 2017

AtaiTec Corporation www.ataitec.com

Outline

- What is MPX
- What is ISD
- Causal DK, DF, surface roughness
- Matching IL, RL, NEXT, FEXT, TDR and TDT
- Scalable models
- MPX vs. eigenvalue
- Summary

What is MPX

A platform to automate PCB material property extraction (DK, DF, roughness).

from two 4-port measurements to de-embedding and curvefitting

Model and report generation

MPX inputs a setup file and outputs a report and length- and frequency-scalable models.

Why do many de-embedding tools have causality error

Many tools use test coupons directly for de-embedding, so difference between actual fixture and test coupons gets piled up into the DUT results.

* http://www.edn.com/electronics-blogs/test-voices/4438677/Software-tool-fixes-some-causality-violations by Eric Bogatin

Causality error makes correlation and curvefitting impossible

Splitting 45 ohm "2x thru" test coupon to deembed 50 ohm fixture gives large causality error.

In-Situ De-embedding (ISD)

Introduced to avoid causality error in de-embedding

Instead of splitting "2x thru" test coupon directly for deembedding, ISD adjusts 2x thru's IL and RL to match fixture's impedance.

IEEE P370 example: Microstrip ISD vs. Split 2x thru

ISD results correlate well with true DUT when 2x thru and fixture have different impedance.

IEEE P370 example: Beatty standard ISD vs. Split 2x thru

ISD results correlate well with true DUT when 2x thru and fixture have different impedance.

Extracting material property from ISD de-embedded results

The shorter trace is used as 2x thru. The DUT results (trace only after ISD) will be matched by 2D solver.

Cross-sectional models for 2D solver

Optimized variables: DK1, DF1, DK2, DF2 R1, R2, R3, R4, R5 (roughness, on/off) Metal width and spacing

ground

Model 5

ataitec

ground

Model 4

Causal dielectric model

- Wideband Debye (or Djordjevic-Sarkar) model
 - Need only four variables: ε_{∞} , $\Delta \varepsilon$, m_1 , m_2

 $\varepsilon_{\infty}=3.35$, $\Delta\varepsilon=0.15$, $m_{1}=10$, $m_{2}=14.5$

Surface roughness model

Effective conductivity (by G. Gold & K. Helmreich at DesignCon 2014) needs only two variables: $\sigma_{\rm bulk}$, R_q

Parameter	Description	Standard
R_q	root mean square	DIN EN ISO 4287
Ra	arithmetic average	DIN EN ISO 4287, ANSI B 46.1
Rk	core roughness depth	DIN EN ISO 13565
Rz	average surface roughness	DIN EN ISO 4287

 Table 1: Statistical parameters to describe surface roughness

• Numerically solving $\nabla^2 \overline{B} - j\omega\mu\sigma\overline{B} + \frac{\nabla\sigma}{\sigma} \times (\nabla \times \overline{B}) = 0$ and equating power to that of smooth surface gives σ_{eff}

- ✤ Simple
- Work well with field solver
- Give effect of roughness on all IL, RL, NEXT and FEXT

Matching IL and RL

Matching NEXT and FEXT

Matching DDIL and DDRL

Matching CCIL and CCRL

Matching TDT and TDR

Comparison of Models 1 to 5

 Model 1 cannot match FEXT. Models 2 to 5 can match all IL, RL, NEXT, FEXT and TDR/TDT very well.

Model 1

ground

ground

Model 5

Model 2

Model 3

Model 4

DK2

Model	DK1	DK2
1	3.510	-
2	2.444	4.294
3	3.413	3.623
4	3.863	3.360
5	3.115	3.975

DK2>DK1 because of positive-polarity FEXT

At 10 GHz

Extracted DK1 and DF1 Model 3

 $\varepsilon_{\infty} = 3.27929$ $\Delta \varepsilon = 0.144348$ m1 = 9.58619m2 = 15.4109

$$\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon \cdot \frac{1}{m_2 - m_1} \cdot \log_{10} \left(\frac{10^{m_2} + i \cdot f}{10^{m_1} + i \cdot f} \right)$$
$$= \varepsilon_r \cdot (1 - i \cdot \tan \delta)$$

Extracted DK2 and DF2 Model 3

 $\varepsilon_{\infty} = 3.46724$ $\Delta \varepsilon = 0.170196$ m1 = 9.58715m2 = 14.8352

$$\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon \cdot \frac{1}{m_2 - m_1} \cdot \log_{10} \left(\frac{10^{m_2} + i \cdot f}{10^{m_1} + i \cdot f} \right)$$
$$= \varepsilon_r \cdot (1 - i \cdot \tan \delta)$$

Extracted effective conductivity *Model 3*

 $\sigma = 5.8 \times 10^7 \text{ S/m}$ $R_q = 0.324321 \,\mu\text{m}$

Length- and frequency-scalable models can now be created.

Scalable models are valuable for channel simulation and what-if analysis.

Alternate approach extracts trace-only attenuation from eigenvalue.

MPX vs. eigenvalue

 Alternate approach matches eigenvalue with 2D solver for material property extraction.

	МРХ	eigenvalue
60	True de-embedding (with ISD)	Not de-embedding
ddin	IL, RL, NEXT, FEXT are extracted	No RL or NEXT
e-embe	Fixtures can be different	Assume fixtures are identical; Extracted data are prone to glitches
	DUT can be arbitrary	Assume trace is uniform
dels	Match all IL, RL, NEXT, FEXT, DDIL, DDRL, CCIL, CCRL, TDR, TDT	Match propagation constant only
om pa	Self consistent	Necessary but not sufficient condition
nerate	Models match original data	Models may not match original data
Ge	Two lines can be asymmetric	Two lines must be symmetric

Summary

- Material Property Extractor (MPX) automates PCB material property extraction (DK, DF, roughness) into one mouse click.
- Accurate de-embedding is crucial.
- In-Situ De-embedding (ISD) avoids causality error when 2x thru coupon and fixture have different impedance.
- MPX creates self-consistent models by matching all IL, RL, NEXT, FEXT, TDR and TDT.
- MPX creates scalable models that are valuable for channel simulation and what-if analysis.

