

Recent Advances in Extracting DK, DF & Roughness of PCB Material

Jayaprakash Balachandran, Cisco Systems inc Kevin Cai, Cisco Systems inc Anna Gao, Cisco Systems inc Bidyut Sen, Cisco Systems inc Pin Jen Wang, Hirose Electric Jeremy Baun, Hirose Electric Ching-Chao Huang, AtaiTec Corp. Clement Luk, Samtec

This session was presented as part of the DesignCon 2019 Conference and Expo

Relentless IO BW increase Pushes PCB design to Limits

Top of Mind PCB design Questions

- a. What dielectric to choose ?
- b. What type of Cu foil to use Rough, smooth, ultra smooth ?
- c. How long can the traces be ?
- d. Does it have right impedance ?
- e. Does it have sufficient margin for High Volume Manufacturing ?
- f. How dense can the layout be ?
- g. Will my design work with fabs both X and Y ?

Electrical Backplane Example

Physical Structure

Composite Channel Model

PCB Design Signal Integrity Verification Flow

PCB Interconnect Performance Prediction requires Meticulous Characterization of Material Properties

PCB Material Characterization Methods

Material Property Extraction Challenges

- Material properties change with the test method
- Dielectric and surface roughness models not consistent across EM simulators \rightarrow hidden parameters with unknown values
- Ambiguity in separation of dielectric and conductor losses
- Fixture design for very high bandwidth
- Material property extraction a big data problem

PCB Material Characterization Requirements

- Material properties over wide bandwidth
- Causal, Passive response
- Well correlated with measurements
- Consistent and repeatable test method
- Characterization on the Target stackup
- Simplified test method and probing techniques
- Test method tolerant to test fixture variations, imperfections & DUT impedances
- Automation to deal with data explosion
- Material data over all expected environmental conditions

Outline

- Introduction : J. Balachandran Cisco inc
- PCB Material Characterization Theory : Ching Chao Huang AtaiTec Corp
- Modeling PCB Interconnects : Alvin Wang Hirose Electricals
- Addressing Skew impairments : Clement Luk, Samtec
- Test Fixture Design : Jeremy Baun Hirose Electricals, J. Balachandran
- Automation : J. Balachandran
- Case Study & Results : Anna Gao Cisco inc
- Summary : Ching Chao Huang

PCB Material Characterization Theory

Outline

- PCB material property extraction flow
- Djordjevic-Sarkar model (for DK/DF)
	- Djordjevic vs. Svensson formats
- Effective conductivity model (for roughness)
	- Conversion from effective conductivity to Huray model
- Templates for 2D solver
- In-Situ De-embedding (ISD)
- Eigenvalue (Delta L) solution
- DK/DF/SR extraction example

PCB material property extraction flow Self-consistent* MPX methodology

• Measure short and long traces by VNA, de-embed short trace from long trace and match all IL, RL, NEXT, FEXT and TDR/TDT of trace-only data by 2D solver to extract DK, DF and roughness.

* Built-in verification with extracted models matching all de-embedded data.

Djordjevic-Sarkar model (for DK/DF)

• Need only four variables: ε_{∞} , $\Delta \varepsilon$, m_1 , m_2 to represent wide-band DK & DF.

$$
\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon \cdot \frac{1}{m_2 - m_1} \cdot \log_{10} \left(\frac{10^{m_2} + i \cdot f}{10^{m_1} + i \cdot f} \right)
$$

$$
= \varepsilon_r \cdot (1 - i \cdot \tan \delta)
$$

 $\varepsilon_{\infty} = 3.35$, $\Delta \varepsilon = 0.15$, $m_1 = 10$, $m_2 = 14.5$

Djordjevic and Svensson formats are equivalent.

Effective conductivity model (for surface roughness)

• Effective conductivity (by G. Gold & K. Helmreich at DesignCon 2014) needs only *two variables:* $\sigma_{\textit{bulk}}$ *, R_q*

- Numerically solving $\nabla^2 \overline{B} j\omega\mu\sigma\overline{B} + \frac{\nabla \sigma}{\sigma} \times (\nabla \times \overline{B}) = 0$ and equating power to that of smooth surface gives $\; \sigma_{\it eff} \;$ σ σ ωµσ
- A recent paper (by D.N. Grujic in MTT, Nov. 2018) gives closed-form equation.

Convert effective conductivity to Huray model

• Huray model

$$
\frac{P_{rough}}{P_{smooth}} \approx 1 + \frac{3}{2} \cdot SR \cdot \left(\frac{1}{1 + \frac{\delta(f)}{a} + \frac{1}{2} \left(\frac{\delta(f)}{a}\right)^2}\right)
$$
\n
$$
\delta(f) = \sqrt{\frac{1}{\pi f \mu \sigma}} \quad ; \quad a = \text{radius} \quad ; \quad SR = \text{surface ratio}
$$

• Curvefit Prough / Psmooth to convert $\sigma_{\textit{bulk}}$, R_q (in X2D2) to a , SR (in HFSS)

Sample templates for 2D solver

Accurate de-embedding is crucial for DK/DF/SR extraction, but…

• Many tools use test coupons directly for de-embedding, so difference between actual fixture and test coupons, in the form of causality error, gets piled up into DUT results.

* <http://www.edn.com/electronics-blogs/test-voices/4438677/Software-tool-fixes-some-causality-violations> by Eric Bogatin

How to identify non-causal S parameter

In-Situ De-embedding (ISD) Introduced to address impedance variation

- ISD uses test coupon ("2x thru" or "1x open / 1x short") as reference and de-embed fixture's actual impedance through numerical optimization.
- Other methods use test coupon directly for de-embedding and result in causality error when test coupon and actual fixture to be de-embedded have different impedance.
- ISD addresses impedance variation between test coupon and actual fixture through software, instead of hardware, improving de-embedding accuracy and reducing hardware cost. **CD** by AtaTac (www.atabac.com

What is "2x thru"

• "2x thru" is 2x lead-ins or lead-outs. For the purpose of DK/DF/SR extraction, "2x thru" corresponds to the shorter trace.

2 sets of "2x thru" are required for asymmetric fixture.

What is "1x open / 1x short"

• "1x open / 1x short" is useful when "2x thru" is not possible (e.g., connector vias, package, …).

Example 1: IEEE P370 plug and play kit Use 45 ohm 2x thru to de-embed 50 ohm fixture

How did ISD do it?

• Through numerical optimization, ISD de-embeds fixture's impedance exactly, independent of 2x thru's impedance

Example 2: USB type C mated connector ISD vs. Tool A

• Good de-embedding is crucial for meeting compliance spec. Non-causal ripples3 -0.5 -10 7 -15 RL (dB) 1L (eB) 5 3 -30 SDD12 (after ISD) -2.5 SDD11 (after ISD) 1 -35 SDD12 (after Tool A) SDD11 (after Tool A) 1 -3 -40 $10¹⁰$ 15 5 20 5 10 15 20 Frequency (GHz) Frequency (GHz) -20 -30 -25 -40 -30 -3! NEXT (dB) FEXT (dB) -50 2 **DUT** -40 6 -60 4 -45 8 -50 -70 SDD13 (after ISD) SDD14 (after ISD) 2 -55 4 SDD13 (after Tool A) SDD14 (after Tool A) -60 -80 5 10 15 20 5 10 15 20 Frequency (GHz) Frequency (GHz)

Converting S parameter into TDR/TDT reveals non-causality

• Counter-clockwise phase angle is another indication of non-causality.

Eigenvalue (Delta L) solution: not de-embedding For calculating trace attenuation only

- Convert S to T for short and long trace structures
- Assume the left (and right) sides of short and long trace structures are identical
- Assume DUT is uniform transmission line
- Trace-only attenuation is written in one equation.

Example 3: 2" (=7"-5") trace attenuation Eigenvalue solution is prone to spikes

ISD's spike-free results help DK/DF/SR extraction later.

ISD vs. eigenvalue solution

Define impedance by minimal RL

• Vary reference impedance Z until reflected energy is minimal.

 $^{88}_{-0.2}$

 0.2

 Ω

 0.6

 0.4 Time (ns) 0.8

 T_b =40ps *Tr* =16ps

35

40

Example 4: Eigenvalue solution becomes unstable in this case, but why?

TDR of raw data reveals why… 2" structure was back-drilled but 5" was not

- Eigenvalue solution assumes 2" and 5" structures have identical launches.
- ISD de-embeds 5" structure's launch correctly.

DK/DF/SR extraction example (7" – 5")

Model 1

Optimized variables: DK1, DF1, DK2, DF2 R1, R2, R3, R4, R5 (roughness) Metal width and spacing

Model 2

ground

Model 3

Model 4

ground

Matching IL and RL

Matching NEXT and FEXT

Large FEXT implies inhomogeneous dielectric

Matching DDIL and DDRL

Matching CCIL and CCRL

Matching TDR

Matching TDT

Extracted DK1, DF1

 $m2 = 15.4109$ $m1 = 9.58619$ $\Delta \varepsilon = 0.144348$ $\varepsilon_{\infty} = 3.27929$

$$
\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon \cdot \frac{1}{m_2 - m_1} \cdot \log_{10} \left(\frac{10^{m_2} + i \cdot f}{10^{m_1} + i \cdot f} \right)
$$

$$
= \varepsilon_r \cdot (1 - i \cdot \tan \delta)
$$

Extracted DK2, DF2

Extracted effective conductivity

 $R_q = 0.324321 \,\mu m$ $\sigma = 5.8 \times 10^7$ S/m

Comparison of Models 1 to 5

Model 1

Model₂

ground

ground

DK1, DF1

Model 3

At 10 GHz

Model 4

Model 5

DK2>DK1 because of positive-polarity FEXT

- Christer Svensson and Gregory E. Dermer, "Time domain modeling of lossy interconnects," IEEE Tran. On Advanced Packaging, Vol. 24, No. 2, May 2001.
- Djordjevic, R.M. Biljic, V.D. Likar-Smiljanic, T.K.Sarkar, <u>"Wide</u>band Frequency-Domain Charácterization of FR-4 and TimeDomain Causality," IEEE Trans. on EMC, vol. 43, No. 4, November
2001.
- J. Eric Bracken, "A causal Huray model for surface roughness," DesignCon 2012.
- Gerald Gold and Klaus Helmreich, "A physical surface roughness model and its applications," IEEE Tran. on Microwave Theory and Techniques, Vol. 65, No. 10, October 2017.
- Dusan N. Grujic, "Closed-form solution of rough conductor surface impedance," IEEE Trans. On Microwave Theory and Techniques, Vol. 66, No. 11, November 2018.
- C.C. Huang, "In-Situ De-embedding," EDI CON, Beijing, China, 04/19 to 04/21/2016.
- C. Luk, J. Buan, T. Ohshida, P.J. Wang, Y. Oryu, C.C. Huang and N. Jarvis, "Hacking skew measurement," DesignCon 2018, 01/30 to 02/01/2018, Santa Clara, CA.
- J. Balachandran, K. Cai, Y. Sun, R. Shi, G. Zhang, C.C. Huang and B. Sen, "Aristotle: A fully automated SI platform for PCB material character̃ization," DesĩgnCon 2017, 01/31-02/02/2017, Santa
Clara, CA.

Outline

- Introduction : J. Balachandran Cisco inc
- PCB Material Characterization Theory : Ching Chao Huang Ataitec Corp
- Modeling PCB Interconnects : Alvin Wang Hirose Electricals
- Addressing Skew impairments : Clement Luk, Samtec
- Test Fixture Design : Jeremy Baun Hirose Electricals, J. Balachandran
- Automation : J. Balachandran
- Case Study & Results : Anna Gao Cisco inc
- Summary : Ching Chao Huang

Modeling PCB Interconnets

Outline

- PCB material property extraction flow
- Measured DUT vs. simulation
- Several ways to model DK, DF and roughness
	- Djordjevc-Sarkar model (for DK/DF)
	- Effective conductivity and Huray models (for roughness)
	- Tabular frequency-dependent DK, DF and conductivity
- Djordjevic-Sarkar model
	- Djordjevic vs. Svensson formats
- Huray model
	- Conversion from effective conductivity to Huray model
- How to specify tabular frequency-dependent DK, DF and conductivity in HFSS
- How to specify Djordjevic-Sarkar and Huray models in HFSS
- Measurement and extracted model for 2" stripline
	- Correlation between HFSS and X2D2* using various DK, DF and roughness models

* X2D2 is a 2D solver from AtaiTec.

PCB material property extraction flow (1/2)

PCB material property extraction flow (2/2)

Modeling session covers these topics!!

De-embedded DUT (measured) vs. HFSS simulation with DK & DF @1GHz

- DK and DF values are usually given at 1GHz.
- Djordjevic-Sarkar model default setting => poor correlation.
- Djordjevic-Sarkar model PCB material extraction => good correlation.

Default D-S model from MPX extraction methodology

WHY??

- We need PCB material property extraction to higher frequencies
- Implement frequency-dependent DK, DF, and conductivity
- Implement Huray model
- Implement Djordjevic-Sarkar model

Djordjevic-Sarkar model (for DK/DF)

• Need only four variables: ε_{∞} , $\Delta \varepsilon$, m_1 , m_2 to represent wide-band DK & DF.

$$
\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon \cdot \frac{1}{m_2 - m_1} \cdot \log_{10} \left(\frac{10^{m_2} + i \cdot f}{10^{m_1} + i \cdot f} \right)
$$

$$
= \varepsilon_r \cdot (1 - i \cdot \tan \delta)
$$

 $\varepsilon_{\infty} = 3.35$, $\Delta \varepsilon = 0.15$, $m_1 = 10$, $m_2 = 14.5$

Djordjevic and Svensson formats are equivalent.

Effective conductivity model (for surface roughness)

• Effective conductivity* (by G. Gold & K. Helmreich at DesignCon 2014) needs only *two variables: σ_{bulk}, R_q*

 $\sigma(x) = \sigma_{bulk} \cdot CDF(x) = \sigma_{bulk} \cdot \int_{0}^{x} PDF(x) du = \sigma_{bulk} \cdot \int_{0}^{x} e^{-\frac{u^2}{2R_q^2}} du$

- Numerically solving $\nabla^2 \overline{B} j\omega\mu\sigma\overline{B} + \frac{\nabla \sigma}{\sigma} \times (\nabla \times \overline{B}) = 0$ and equating power to that of smooth surface gives $\; \sigma_{\it eff} \;$ σ σ ωµσ
- A recent paper (by D.N. Grujic in MTT, Nov. 2018) gives closed-form equation.

Convert effective conductivity to Huray model

• Huray model

$$
\frac{P_{rough}}{P_{smooth}} \approx 1 + \frac{3}{2} \cdot SR \cdot \left(\frac{1}{1 + \frac{\delta(f)}{a} + \frac{1}{2} \left(\frac{\delta(f)}{a}\right)^2}\right)
$$
\n
$$
\delta(f) = \sqrt{\frac{1}{\pi f \mu \sigma}} \quad ; \quad a = \text{radius} \quad ; \quad SR = \text{surface ratio}
$$

• Curvefit Prough / Psmooth to convert $\sigma_{\textit{bulk}}$, R_q (in X2D2) to a , SR (in HFSS)

Automated conversion* from effective conductivity to Huray model

HFSS setup How to specify tabular frequency-dependent DK, DF and conductivity (1/2)

HFSS setup How to specify tabular frequency-dependent DK, DF and conductivity (2/2)

HFSS setup How to specify Djordjevic-Sarkar model

DESIGNCON 2019

60

HFSS setup How to specify Huray model

Enter parameters from ADK output

Measurement

• De-embed 2" trace from 4" trace and curvefit DUT (the remaining 2" trace) with homogeneous stripline model*.

* Using ISD, ADK and X2D2 from AtaiTec.

Extracted frequency-dependent DK, DF & conductivity

HFSS comparison Create models from extracted results

2" stripline (Cascaded by 20 x 0.1" trace)

Differential IL & RL

- Compared various simulations with de-embedded DUT (measurement).
- Measured DUT, HFSS (except Case 3) and 2D solver (X2D2) correlate very well.
	- Case 3 was simulated with larger delta S.

Differential TDR @ 12.5ps rise time

- Compared various simulations with de-embedded DUT (measurement).
- Measured DUT, HFSS (except Case 3) and 2D solver (X2D2) correlate very well.

Measured DU⁻ Case 1 Case 2 Case 3 Case 4 Case 5

• Case 3 was simulated with larger delta S.

HFSS and X2D2 meshes

Case 5 5-6 meshes at top/bottom

Number of meshes vs. convergence

Case 1 used ~ 634K meshes **Case 2 used ~ 112K meshes Case 1 used ~ 3K meshes Case 2 used ~ 3K** meshes

 \blacktriangledown

Case 4 used ~ 150K meshes **Case 4 used ~ 199K meshes**

Summary

- Correlated measured DUT, HFSS and X2D2 using various frequency-dependent DK, DF and roughness models.
	- Showed how to equate effective conductivity to Huray model.
	- Showed different setup conditions with different DK, DF, and roughness model.
- Need many meshes in HFSS to have high accuracy for 2D structures.
	- At least 4 meshes(?) on the larger side of conductor cross section are needed.

References

- Christer Sevnsson and Gregory E. Dermer, "Time domain modeling of lossy interconnects," IEEE Tran. On Advanced Packaging, Vol. 24, No. 2, May 2001.
- Djordjevic, R.M. Biljic, V.D. Likar-Smiljanic, T.K.Sarkar, "Wideband Frequency-Domain Characterization of FR-4 and TimeDomain Causality," IEEE Trans. on EMC, vol. 43, No. 4, November 2001.
- J. Eric Bracken, "A causal Huray model for surface roughness," DesignCon 2012.
- Gerald Gold and Klaus Helmreich, "A physical surface roughness model and its applications," IEEE Tran. on Microwave Theory and Techniques, Vol. 65, No. 10, October 2017.
- Dusan N. Grujic, "Closed-form solution of rough conductor surface impedance," IEEE Trans. On Microwave Theory and Techniques, Vol. 66, No. 11, November 2018.

Outline

- Introduction : J. Balachandran Cisco inc
- PCB Material Characterization Theory : Ching Chao Huang Ataitec Corp
- Modeling PCB Interconnects : Alvin Wang Hirose Electricals
- Addressing Skew impairments : Clement Luk, Samtec
- Test Fixture Design : Jeremy Baun Hirose Electricals, J. Balachandran
- Automation : J. Balachandran
- Case Study & Results : Anna Gao Cisco inc
- Summary : Ching Chao Huang

Addressing skew impairments in characterization

Motivation

• 1) Fiber weave effect.

30ps skew $Diff$ FEXT \Box \Box Diff IL 9 $9 - 15$ $\overline{\mathcal{D}}$ -80 Pair 8 Original - Pair 8 Original -90 Pair 8 De-skewed Pair 8 De-skewed -100 8 10 12
Frequency (GHz) 12 14 16 18 $10₁₀$ 12 - 20 Frequency (GHz)

• 2) Skew affects Dk/Df extraction.

 $6" + DUT + 6"$

What is skew?

• Delay between p- and n-line: p2-n2.

De-embedded skew@DUT = $(p1 + p2 + p3 - p4) - (n1 + n2 + n3 - n4)$ $= (p2 - n2) + (p1 + p3 - (n1 + n3)) - (p4 - n4)$

= Skew@DUT + Skew@Fixture - Skew@Coupon

PCB measurement via de-embedding

• Single-ended and differential insertion loss look okay.

Opposite skew in coupon and fixture + DUT

- With 5ps rise time (20/80),
	- 2" gives -1.1584 ps skew.
	- 7" gives 0.909807ps skew.

De-embedded result

- Include coupon skew in de-embedding gives more skew.
- DUT with more skew (include coupon skew in this case) results in more insertion

De-skew for unbiased 'loss per inch'

- Padding ideal T-line to shorter trace to match phase delay of longer trace.
- A more consistent differential insertion loss \rightarrow unbiased 'loss per inch'.

Skewless de-embedding

• Pad ideal transmission line to de-skew.

DUT skew is worse when long and short diff pairs have opposite skew.

Eigenvalue vs. DUT

- Eigenvalue solution operates directly on differential (or common) mode only.
	- It has no information of DUT skew.
- Glitches and spikes in eigenvalue solution.
	- Due to assumption of ideal T-line and identical launches.

Eigenvalue vs. ISD*

- Use ISD to de-embed differential mode and compare with eigenvalue.
- ISD does not give glitches and spikes.
- ISD does not assume identical launches or uniform T-line for DUT.

Example 2: De-skew 3" and 8" pairs before de-embedding

Skew affects de-embedded results (and therefore DK/DF/SR extraction)

Takeaways

- Fiber weave effect may contribute to PCB skew.
- Fixtures and DUT skews are unknow. It is difficult to quantify skew by deembedding.
	- When fixture and coupon have opposite skew, de-embedding gives more DUT skew.
- De-skewed de-embedding gives unbiased insertion loss and therefore accurate extracted Dk/Df/SR.

References

- A. Nagao, T. Takada, C.C. Huang, J. Buan, K. Aihara, "New methodology for 25+ Gbps connector performance characterization", DesignCon 2014, Santa Clara, CA
- J. Balachandran, K. Cai, Y. Sun, R. Shi, G. Zhang, C.C. Huang and B. Sen, "Aristotle: A fully automated SI platform for PCB material characterization," DesignCon 2017, Santa Clara, CA.
- C. Luk, J. Buan, T. Ohshida, P.J. Wang, Y. Oryu, C.C. Huang and N. Jarvis, "Hacking skew measurement," DesignCon 2018, Santa Clara, CA.

Outline

- Introduction : J. Balachandran Cisco inc
- PCB Material Characterization Theory : Ching Chao Huang Ataitec Corp
- Modeling PCB Interconnects : Alvin Wang Hirose Electricals
- Addressing Skew impairments : Clement Luk, Samtec
- Test Fixture Design : Jeremy Baun Hirose Electricals, J. Balachandran
- Automation : J. Balachandran
- Case Study & Results : Anna Gao Cisco inc
- Summary : Ching Chao Huang

Test Fixture Design

Outline

- Bandwidth consideration for test fixture design
- Example test fixture
- Fixture design studies
	- Connector and probe study
	- Fixtureless extraction study
- Test fixture design summary

Bandwidth consideration for test fixture design

DUT, fixture, and 2x thru

2x thru requirements

- As a rule of thumb, the insertion loss and return loss should not cross up to the frequency of interest.
- Insertion loss should be resonance free up to the frequency of interest.

2x thru - Connector consideration

- All coaxial connectors will resonate at some frequency and have impedance discontinuities
- Choose a connector appropriate for your frequency range of interest.

2x thru - Connector footprint consideration

• Even when using the appropriate connector, a bad footprint design can cause large impedance discontinuities, which causes high RL.

2x thru - Via consideration

- Similarly, poorly designed vias can exhibit large impedance discontinuities.
- Via features to consider
	- Via sizes
	- Gnd via locations
	- Gnd plane antipad sizes/shapes
	- Via stub
	- Pad sizes/shapes

Hirose's PCB Design Support

2x thru - PCB material loss consideration

- The bulk of the loss of a fixture typically comes from the PCB trace.
- For a given length, different materials will yield different amounts of loss, which can affect bandwidth

2x thru - PCB trace length consideration

- Similarly, for a given material, different lengths will yield different amounts of loss, which can affect bandwidth
- In this case, 2" is a maximum length to achieve 40GHz bandwidth.

Differential fixture considerations

- Skew mitigation
	- Intra-pair skew can affect loss measurements
	- Match lengths of the two lines in layout (1mils max difference is not difficult, which comes out to be <0.2ps on material with Dk=4)
- Connector breakout routing
	- Routing from coupled differential lines to the connectors may require the lines to split and become uncoupled
	- For impedance matching, trace width will need to change at the transition from coupled to uncoupled.

Example test fixture

2x thru fixture-fixture measurement results

- Comparing the measurement to simulation, measurement shows 1.7dB more loss at 40GHz and 1.5dB higher RL at 40GHz.
- Because there was margin in simulation, measured IL and RL do not cross up to 40GHz. We should be able to get good de-embedded results.

Fixture-DUT-fixture measurement

• IL and RL cross within the bandwidth, but this won't affect the de-embedding quality.

DUT measurement (de-embed by ISD)

• The relative flatness of the RL is evidence that the connector and via are deembedded.

Probe study

- Objective: To study the feasibility of using probes for characterizing PCB materials.
- DUT: 6" single-ended stripline (same DUT previously shown)
- Fixture: Same PCB as previously shown.
- VNA was calibrated to the tips of the probes.

Fixture-fixture measurements

- Probe measurement shows more IL deviation, higher return loss, and larger impedance discontinuities at PCB interface.
- However, it should yield good de-embedding results because IL doesn't cross RL.

Fixture-DUT-fixture measurements

0 5 10 15 20 25 30 35 40 -20 $-$ -18 -16 -14 -12 -10 -8 -6 -4 -2 Ω Frequency (GHz) S (dB) 2.92mm Probe

THE BOARD

DESIGI

DUT (de-embed by ISD)

• De-embedded DUT measurement results show good correlation, with probe measurement having slightly more loss, slightly lower RL, and slightly higher impedance.

MPX extraction with fixed dielectric thickness

- Probe measurement extracted conductivity is \sim 10% lower and Df is \sim 5% lower than the 2.92mm measurement.
- Differences may be due to slight difference in de-embedded IL.

MPX extraction with fixed dielectric thickness, trace width, and Rq

- By fixing dielectric thickness, trace width, and Rq to the measured values, we are able to extract more consistent parameters between the two cases.
- Difference is within 5% for Df.

Probe study conclusion

- De-embedded IL, RL and TDR results are very close to 2.92mm results.
- With measured dimensions taken into account (dielectric thickness, trace width, Rq), all extracted parameters show little difference, within 5%.

Limited space conditions

- What if you wanted to characterize the material of a board you designed, but there is only enough space on your board to include a single line for a test coupon?
- Will you be able to characterize the material without a 2x thru for de-embedding?

Fixture-fixture measurements

• The back-to-back connectors' insertion loss and return loss do not cross within the 40GHz range, which meets the criteria for de-embedding.

MPX extraction trace + via length

- Via length must be taken into account when extracting material properties.
- With backdrilled vias, fixture-less de-embedding can match the fixtured deembedding results to about 2%.

Test fixture design summary

- Test fixtures proposed in this MPX methodology is very simple and straight forward.
- The 2x thru has two requirements:
	- IL should not cross RL up to frequency of interest
	- IL should be resonance free up to frequency of interest
- Connectors, footprints, vias, and PCB trace lengths need to be carefully selected and designed in order to meet the above criteria.

SMA Challenge

- SMA connectors are very reliable and robust \rightarrow consistent results
- 100s of SMA connectors per board for detailed characterization across layers
- SMA assembly is manual \rightarrow time consuming and labor intensive
- SMA cable attachment (requires Torque wrench) \rightarrow time consuming & labor intensive
- SMA connectors occupy considerable area on the board
- *Need alternate connector solution for rapid measurements with smaller connector foot print*

Quicklink Connectors Enable Rapid Measurements

1.85

- Push & Twist mechanism \rightarrow less effort for assembly & removal
- No need to remove VNA cables once attached
- Only two connectors required for entire board
- High Bandwidth response
- Well suited for PCB characterization in lab & production environments

PCB Characterization with Quicklink : Results

- Quicklink Cable & Connector response deembedded
- Deembedded Tline matches well with Model

Thanks to Gert Hogenwarter, Gatewave Northern inc for Quicklink PCB footprint optimizations

Outline

- Introduction : J. Balachandran Cisco inc
- PCB Material Characterization Theory : Ching Chao Ataitec Corp
- Modeling PCB Interconnects : Alvin Hirose Electricals
- Addressing Skew impairments : Clement Luk, Samtec
- Test Fixture Design : Jeremy Baun Hirose Electricals, J. Balachandran
- Automation : J. Balachandran
- Case Study & Results : Anna Gao Cisco inc
- Summary : Ching Chao

PCB material characterization is challenging

- 100s of s-param files
	- Multiple layers
	- Different impedances (85, 90, 100 Ω etc)
	- Several dielectric material choices (Standard loss, Mid loss, low loss etc)
	- Varying Cu thickness and surface roughness (HVLP, VLP, RTF etc)
	- Different types of Fiber weaves (2110, 3116 etc) , resin contents
	- Multiple Fab Vendors
- PCB Material Characterization is a big data problem

Characterizing PCB channels

Key parameters of interest

- Insertion loss per inch
- Differential Impedance
- Diff. Pair Skew
- DK, DF
- Cu Surface roughness

Qualitative Analysis

Electrical Models

Automation Framework

WHERE

Excel Control File that Enables Automation – Example

Insertion Loss Example

Insertion Loss [dB / inch]

17 % difference in IL across layers

Diff. Impedance Example

Quick Comparison of impedance control across layers

Raw data

Diff Pair Skew Example

Skew histogram plot taken from all Diff. Pair measurements in the SI Test board

Automation Summary

- PCB Material Characterization is a big data problem
- Automation is essential
- Discussed methodology for Automation & provided examples

Outline

- Introduction : J. Balachandran Cisco inc
- PCB Material Characterization Theory : Ching Chao Huang Ataitec Corp
- Modeling PCB Interconnects : Alvin Wang Hirose Electricals
- Addressing Skew impairments : Clement Luk, Samtec
- Test Fixture Design : Jeremy Baun Hirose Electricals, J. Balachandran
- Automation : J. Balachandran
- Case Study & Results : Anna Gao Cisco inc
- Summary : Ching Chao Huang

Case study & results

Outline

- Background Information
- T-line modeling for material characterization
	- Homogeneous vs inhomogeneous stripline models
- Impact of SR on DF extraction
- Skew impact on insertion loss and material characterization
- Temperature Impact on material characterization
- Summary

Background information on material characterization case study Correlated with

- A good correlation between de-embedded and fitted data proves the accuracy of Dk & DF extraction.
- VNA measurements performed on multiple boards with high/mid/low loss materials

Homogeneous vs inhomogeneous models for T-line modeling

Homogeneous Model Inhomogeneous Model (For 2-layer and 3-layer model)

- Both homogeneous and inhomogeneous models correlate well with measurements
- Homogeneous model sufficient for IL / RL modeling
- For accurate FEXT, inhomogeneous model required

DK & DF extraction using homogeneous and inhomogeneous models

• Mid loss material has different DF distribution compared to low loss material

Loss due to surface roughness can be lumped into dielectric loss for model simplicity

- Different tools have difference SR model. To simplified the process, we combine the surface roughness into DF
- Good fit can be obtained with or without SR

Dielectric loss with / without considering Surface Roughness (SR) across layers

ن ال

 $\overline{\mathcal{L}^{\text{b}}(x)}$. (since

- The bar means the DF variation across several layers
- High loss material has lower DF variation across layers than low loss material

Comparison of insertion loss for HVLP and VLP

- The measured traces with the same impedance have the same geometry design, dielectric material (mid loss material) , thickness and are fabricated by the same vendor
- The IL data are obtained by averaging de-embedded results of traces across 5 different layers
- Surface roughness (SR) is forced to be 0 when extracting DF (combining SR effect into DF for simplifying the process)

Conclusions:

50

- \triangleright DK increases with surface roughness
- \triangleright DF increases ~30 % for frequency > 5GHz

Comparison of de-embedded results without and with skew

- The measurement data show that skew can affect the accuracy of the de-embedded process and thus MPX results
- The fiber-weave effect can add skew into s-parameter measurements
- \triangleright Recommend to de-skew before DK and DF extraction

Temperature impact on the insertion loss

- PCB board is held at the desired temperature for **1 hr** before VNA measurement
- VNA calibrated at room temperature
- Cable length inside the chamber should be as short as possible. Long cable (25 inch) will add **~2 % extra loss** to the final results compared to the short cable.

S-parameter measurement at different temperatures

- Mid loss material and low loss material are studied
- Differential traces with 85 Ω
- \triangleright Return loss is not affected by temperature

De-embedded insertion loss at different temperatures

- 2X thru de-embedded method is used to minimize the effect of cable
- \triangleright Thermal Coefficient of Dissipation Factor (TCDF) like spec is needed for digital applications

DK & DF extraction at different temperature

- DC conductivity is a function of temperature
- Both conductor loss and dielectric loss increase as temperature rises
- Both DK and DF increases with temperature

Summary

- \triangleright Characterized different PCB materials with std loss, mid loss and low loss characteristics
- \triangleright Inhomogeneous model (2-layer and 3-layer) required for FEXT modeling
- \triangleright Homogeneous model sufficient for insertion loss and return loss prediction
- \triangleright Loss due to surface roughness can be lumped into dielectric loss for model simplicity
- \triangleright The fiber-weave effect can impact insertion loss and thus dielectric modeling. Recommend de-skew before DKDF extraction
- \triangleright Significant increase in Insertion loss at higher temperatures. Both conductor and dielectric loss increase with temperature

Outline

- Introduction : J. Balachandran Cisco inc
- PCB Material Characterization Theory : Ching Chao Huang Ataitec Corp
- Modeling PCB Interconnects : Alvin Hirose Electricals
- Addressing Skew impairments : Clement Luk, Samtec
- Test Fixture Design : Jeremy Baun Hirose Electricals, J. Balachandran
- Automation : J. Balachandran
- Case Study & Results : Anna Gao Cisco inc
- Summary : Ching Chao Huang

Summary

Takeaways

- Self-consistent PCB material property extraction flow is presented.
	- Extracted models match all IL, RL, NEXT, FEXT and TDR/TDT.
- Djordjevic-Sarkar and Svensson-Dermer models are equivalent.
- Effective conductivity model can be curvefitted to Huray model.
- In-Situ De-embedding (ISD) addresses impedance variation by software, not hardware.
- Eigenvalue (Delta L) solution is prone to spikes.
- Many de-embedding and DK/DF/SR extraction examples are shown.
	- Connector vs. probe measurements
	- Various PCB materials
	- Skew and temperature effect
	- Effect of 2D models
- Automation

In-Situ De-embedding (ISD)

DK/DF/SR extraction (from ADK)

To explore further…

Free seminar: "In-Situ De-embedding," 01/30/2019, 8:05 am – 8:45 am, Great America Meeting Room 2, Sponsored by Rohde & Schwarz.

Visit AtaiTec Booth #1245.

Thank you!

and the first

QUESTIONS?

