# In-Situ De-embedding (ISD)

Ching-Chao Huang huang@ataitec.com

January 29, 2020





#### **Outline**

- What is causality
- What is In-Situ De-embedding (ISD)
- Comparison of ISD results with simulation and other tools
- How non-causal de-embedding affects connector compliance testing
- How to extract accurate PCB trace attenuation that is free of spikes and glitches
- How to extract a PCB's material property (DK, DF, roughness) by matching all IL, RL, NEXT, FEXT and TDR/TDT of de-embedded PCB traces





### **VNA** and **S** parameter

Vector network analyzer (VNA) is an equipment that launches a sinusoidal waveform into a structure, varies the period (or frequency) of waveform, and lets us observe the transmitted and reflected wave as "frequency-domain response".

 Such frequency-domain response, when normalized to the incident wave, is called scattering parameter

3

### What is S parameter

For an n-port (or I/O) device, S parameter is an n x n matrix:



- $S_{ij}$  is called the S parameter from Port j to Port i.
- $S_{ij}$  has a unique property that its magnitude is less than or equal to 1 (or, 0 dB) for a passive device.

$$\left|S_{ij}\right| \le 1$$

$$S_{ij}(dB) = 20 \times \log_{10}\left|S_{ij}\right| \le 0 \ dB$$





### What is a Touchstone (.sNp) file

 S parameter at each frequency is expressed in Touchstone file format.

```
in GHz
                 in dB and
                               Reference
                 phase angle
       S param
                               impedance
    Total number of ports = 4
    Total number of frequency points = 800
  # GHZ
        S DB
               R 50
                              -41.40676 79.91354
                                                   -0.08648679 -6.544144
  0.025
                    48.77486
         -36.59296
                                                                                      -105.618
                              -36.35592
                                         51.52433
                                                             -105.5124
                                                                                      -6.527076
         -0.08421237 -6.537903 -49.44814
                                                                                      79.91856
                                            -105.644
                                                       -36.0317
                                            -6.542909
                                                       -41.36758
        -32.22576
                                        74.15976
                                                  -0.1277169
                                                              -12.82876
                   74.16304
                             -32.12694
                                         50.92389
                                                   -43.90926
                                                              -112.0764
                                                                                     -12.7985
                                                                         -0.132402
         -0.1242117 -12.82302 -43.89
                                       -112.0248
                                                   -32.10987
                                                              50.3115
                                                                      -35.56998
         -43.88424 -112.0517 -0.1381616
                                          -12.80199 -35.56758 74.06782
                                                                           -31.94136
                                                                                      50.49276
  0.075
         -29.88861 42.02766 -32.19713
                                         68.06704
                                                   -0.1589249
                                                                -19.05252
                                                                           -40.67476
         -32.19116 68.0941
                                                 -40.63857
         -0.1603356 -19.0376
                                          -118.8543
                                                     -29.89064
          -40.65711 -118.8021
                               -0.1737256
                                           -19.02956
                                                     -32.16865
                                                                 67.93389
                                                                           -29.65444
```

Frequency in GHz

S11, S12, ..., S44 in dB and phase angle





### What is causality

### cau·sal·i·ty

/kô'zalədē/

#### noun

- 1. the relationship between cause and effect.
- 2. the principle that everything has a cause.

In other words:

Can not get something from nothing.





### How to identify non-causal S parameter

Convert S parameter into TDR/TDT. Response before time zero\* and/or after DUT is non-causal. 110 105 -10 Z (Ohm) 100 S (dB) \* Delay waveform by 1ns to see if tools -30 do not show before 90 time zero. SDD11 TDD1 -40 85 10 Frequency (GHz) Time (ns) 200 Counterclockwise

Check phase angle.







### Why does S parameter violate causality

- Measurement error (de-embedding), simulation error (material property) and finite bandwidth of S parameter all contribute to non-causality.
- Kramers-Kronig relations require that the real and imaginary parts of an analytic function be related to each other through Hilbert transform:

$$\Psi(\omega) = \Psi_{R}(\omega) + j\Psi_{I}(\omega)$$

$$\Psi_{R}(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\Psi_{I}(\omega')}{\omega' - \omega} d\omega'$$

$$\Psi_{I}(\omega) = -\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\Psi_{R}(\omega')}{\omega' - \omega} d\omega'$$





### What is de-embedding

 To remove the effect of fixture (SMA connector + lead-in/out) and extract the S parameter of DUT (device under test).



- The lead-ins and lead-outs don't need to look the same.
- There may even be no lead-outs (e.g., package).





# Why do most de-embedding tools give causality error

 Most tools use test coupons directly for deembedding, so difference between actual fixture and test coupons gets piled up into DUT results.



<sup>\*</sup> http://www.edn.com/electronics-blogs/test-voices/4438677/Software-tool-fixes-some-causality-violations by Eric Bogatin



## What is In-Situ De-embedding (ISD) Introduced to address impedance variation

 ISD uses test coupon ("2x thru" or "1x open / 1x short") as reference and de-embeds fixture's actual impedance through numerical optimization.

 Other methods use test coupon directly for de-embedding and result in causality error when test coupon and actual fixture to be de-embedded have different impedance.

 ISD addresses impedance variation between test coupon and actual fixture through software, instead of hardware, improving de-embedding accuracy and reducing

hardware cost.







### ISD is integrated into R&S ZNA, ZNB







### What is "2x thru"

"2x thru" is 2x lead-ins or lead-outs.



2 sets of "2x thru" are required for asymmetric fixture.



### What is "1x open / 1x short"

"1x open / 1x short" is useful when "2x thru" is not possible (e.g., connector vias, package, ...).







### What is "1x open + 1x short"

"1x open + 1x short" can be equated to effective\* 2x thru.



$$\left[S\right]^{2x} = \begin{bmatrix} S_{11}^{2x} & S_{12}^{2x} \\ S_{12}^{2x} & S_{11}^{2x} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} S_{11}^{\text{open}} + S_{11}^{\text{short}} & S_{11}^{\text{open}} - S_{11}^{\text{short}} \\ S_{11}^{\text{open}} - S_{11}^{\text{short}} & S_{11}^{\text{open}} + S_{11}^{\text{short}} \end{bmatrix}$$

<sup>\*</sup> C.C. Huang, "Fixture de-embedding using calibration structures with open and short terminations," US patent no. 9,797,977, 10/24/2017.



### Why ISD is more accurate and saves \$\$\$

#### TRL calibration board



- More board space Multiple test coupons are required.
- Test coupons are used directly for deembedding.
- All difference between calibration and actual DUT boards gets piled up into DUT results.
- Expensive SMAs, board materials (Roger) and tight-etching-tolerance are required.
  - Impossible to guarantee all SMAs and traces are identical (consider weaves, etching, ...)
- Time-consuming manual calibration is required.
  - Reference plane is in front of DUT.

#### **ISD** test coupon



- Only one 2x thru test coupon is needed.
- Test coupon is used only for reference, not for direct de-embedding.
- Actual DUT board impedance is deembedded.
- Inexpensive SMAs, board materials (FR4) and loose-etching-tolerance can be used.
- ECal can be used for fast SOLT calibration.
  - Reference plane is in front of SMA.
  - De-embedding requires only two input files:
     2x thru and DUT board (SMA-to-SMA)
     Touchstone files.
  - More information: Both de-embedding and DUT files are provided as outputs.



## **Example 1: Mezzanine connector** *ISD vs. TRL*

 In this example, we will use ISD and TRL to extract a mezzanine connector and compare their results.





\*Courtesy of Hirose Electric





## **DUT results after ISD and TRL**Which one is more accurate?

TRL gives too many ripples in return loss (RL) for such a small DUT.







# Converting S parameter into TDR/TDT shows non-causality in TRL results



Rise time = 40ps (20/80)





## Zoom-in shows non-causal TRL results in all IL, RL, NEXT and FEXT

TRL causes time-domain errors of 0.38% (IL), 25.81% (RL), 1.05% (NEXT) and 2.86% (FEXT) in this case\*.



\* The percentage is larger with single-bit response and/or faster rise time.

Rise time = 40ps (20/80)



#### How did ISD do it?

 Through numerical optimization, ISD de-embeds fixture's impedance exactly, independent of 2x thru's impedance.



## TRL can give huge error in SDD11 even with small impedance variation\*

 ISD is able to de-embed fixture's differential impedance with only a single-trace 2x thru.







## **Example 2: Mezzanine connector Extracting DUT from a large board**

 TRL is impractical for de-embedding large and coupled lead-ins/outs.







# ISD can use a .s4p file of 2x thru for de-embedding

 TRL would have required many long and coupled traces. Tool A gave incorrect results.







## ISD can even use a .s2p file of 2x thru to de-embed crosstalk...

And the results are similar!







## ISD allows a large demo board to double as a characterization board

 ISD de-embeds fixture's impedance regardless of 2x thru's impedance.





## Example 3: USB type C mated connector ISD vs. Tool A

 Good de-embedding is crucial for meeting compliance spec.







## **DUT results after ISD and Tool A**Which one is more accurate?

Tool A gives too many ripples in return loss (RL) for such a small DUT.
Non-causal ripples







## **Converting S parameter into TDR/TDT shows non-causality in Tool A results**

 Counter-clockwise phase angle is another indication of non-causality.







# De-embedding affects pass or fail of compliance spec.

ISD improves IMR and IRL (from compliance tool).









**RL** 

ΤI

## **Example 4: Resonator** *ISD vs. Tool A vs. simulation*

 Good de-embedding is crucial for design verification (i.e., correlation) and improvement.







### SDD11

#### ISD correlates with simulation







## SCC11 ISD correlates with simulation

Good correlation is crucial for design improvement.



## **Example 5: IEEE P370 plug and play kit Beatty standard**







### FIX-DUT-FIX vs. measured DUT







#### De-embedded DUT vs. measured DUT



1/21/2020 7:37:32 PM





#### Example 6: IEEE P370 plug and play kit Use 45 ohm 2x thru to de-embed 50 ohm fixture\*

\* To mimic possible PCB impedance variation



1.85mm M/M + M/F Adapter 1.85mm M/M + M/F Adapter

 $^{
m M16}$  exp 3.1.1 exp 3.1.2 (50 ohm) (50 ohm) M1

**FIXTURE A** exp 4.1.1 6 cm microstrip **FIXTURE B** (DUT)

Inaccurate RL is not suitable for DK/DF/SR extraction.







Original

Tool A

ISD

Original

Tool A ISD.

### 2x thru vs. fixture impedance

ISD de-embeds fixture's impedance, not 2x thru's impedance.







### **Example 7: PCB trace attenuation ISD vs. eigenvalue (Delta-L)**

 De-embed short trace ( + launch) from long trace ( + launch) to get trace-only attenuation.







### **Eigenvalue solution: not de-embedding For calculating trace attenuation only**

- Convert S to T for short and long trace structures
- Assume the left (and right) sides of short and long trace structures are identical
- Assume DUT is uniform transmission line
- Trace-only attenuation is written in one equation.



For uniform transmission line:





#### Case 1: 2" (=7"-5") trace attenuation Eigenvalue solution is prone to spikes



ISD's spike-free results help DK and DF extraction later.



## One click compares ISD with eigenvalue and more...







#### How to define trace impedance PCB trace is non-uniform transmission line

Define impedance by minimal RL\*



#### Minimize:

$$\varphi = \int_{f_{\min}}^{f_{\max}} \left\{ \left| S_{11}(f) \right|^2 + \left| S_{22}(f) \right|^2 \right\} \cdot \left| w(f) \right|^2 df$$

$$w(f) = \frac{\sin(\pi f T_r)}{\pi f T_r} \cdot \frac{\sin(\pi f T_b)}{\pi f T_b}$$









<sup>\*</sup> J. Balachandran, K. Cai, Y. Sun, R. Shi, G. Zhang, C.C. Huang and B. Sen, "Aristotle: A fully automated SI platform for PCB material characterization," DesignCon 2017, 01/31-02/02/2017, Santa Clara, CA.

#### Skewless de-embedding

Pad ideal transmission line to de-skew.







## ISD optionally automates de-skewing of raw data









## Case 2: Extracted trace attenuation can be very different with or without skew







## Case 3: Eigenvalue (Delta-L) solution becomes unstable in this case, but why?









### TDR of raw data reveals why... 2" structure was back-drilled but 5" was not

- Eigenvalue solution assumes 2" and 5" structures have identical launches.
- ISD de-embeds 5" structure's launch correctly.



ISD saves \$\$\$ and time for not spinning another board.



## **Example 8: Material property extraction** *DK, DF and roughness*

 Self consistent approach to extract DK, DF and roughness by matching all IL, RL, NEXT, FEXT and TDR/TDT of de-embedded trace-only data.





#### **Models for cross section**











Optimized variables: DK1, DF1, DK2, DF2

Metal width and spacing

R1, R2, R3, R4, R5 (roughness)















#### Causal dielectric model

- Wideband Debye (or Djordjevic-Sarkar) model
  - Need only four variables:  $\varepsilon_{\infty}$  ,  $\Delta \varepsilon$  ,  $m_1$  ,  $m_2$

$$\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon \cdot \frac{1}{m_2 - m_1} \cdot \log_{10} \left( \frac{10^{m_2} + i \cdot f}{10^{m_1} + i \cdot f} \right)$$
$$= \varepsilon_r \cdot (1 - i \cdot \tan \delta)$$





$$\varepsilon_{\infty} = 3.35$$
 ,  $\Delta \varepsilon = 0.15$  ,  $m_1 = 10$  ,  $m_2 = 14.5$ 





### Surface roughness model

• Effective conductivity (by G. Gold & K. Helmreich at DesignCon 2014) needs only two variables:  $\sigma_{bulk}$  ,  $R_q$ 

| Parameter | Description               | Standard                     |
|-----------|---------------------------|------------------------------|
| $R_q$     | root mean square          | DIN EN ISO 4287              |
| $R_a$     | arithmetic average        | DIN EN ISO 4287, ANSI B 46.1 |
| $R_k$     | core roughness depth      | DIN EN ISO 13565             |
| $R_z$     | average surface roughness | DIN EN ISO 4287              |

$$\sigma(x) = \sigma_{bulk} \cdot CDF(x) = \sigma_{bulk} \cdot \int_{-\infty}^{x} PDF(x) du = \sigma_{bulk} \cdot \int_{-\infty}^{x} e^{-\frac{u^2}{2R_q^2}} du$$



Table 1: Statistical parameters to describe surface roughness

• Numerically solving  $\nabla^2 \overline{B} - j\omega\mu\sigma\overline{B} + \frac{\nabla\sigma}{\sigma} \times (\nabla \times \overline{B}) = 0$  and equating power to that of smooth surface gives  $\sigma_{eff}$ 



- Simple
- Work well with field solver
- Give effect of roughness on all IL, RL, NEXT and FEXT



### Convert effective conductivity to Huray model

Huray model

$$\frac{P_{rough}}{P_{smooth}} \approx 1 + \frac{3}{2} \cdot SR \cdot \left( \frac{1}{1 + \frac{\delta(f)}{a} + \frac{1}{2} \left( \frac{\delta(f)}{a} \right)^2} \right)$$

$$\delta(f) = \sqrt{\frac{1}{\pi f \mu \sigma}} \; ; \; a = \text{radius} \; ; \; SR = \text{surface ratio}$$

• Curvefit\*  $P_{rough}$  /  $P_{smooth}$  to convert  $\sigma_{bulk}$ ,  $R_q$  to a, SR



\*Automated in ADK





#### **DK/DF/SR** extraction (from ADK)



Different roughness for each surface





### **Matching IL and RL**







#### **Matching NEXT and FEXT**







### **Matching DDIL and DDRL**







### **Matching CCIL and CCRL**







### **Matching TDT and TDR**







#### Comparison of Models 1 to 5

 Model 1 cannot match FEXT. Models 2 to 5 can match all IL, RL, NEXT, FEXT and TDR/TDT very well.







### Extracted DK1 and DF1 Model 3



$$\varepsilon_{\infty} = 3.27929$$
 $\Delta \varepsilon = 0.144348$ 
 $m1 = 9.58619$ 
 $m2 = 15.4109$ 

$$\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon \cdot \frac{1}{m_2 - m_1} \cdot \log_{10} \left( \frac{10^{m_2} + i \cdot f}{10^{m_1} + i \cdot f} \right)$$
$$= \varepsilon_r \cdot (1 - i \cdot \tan \delta)$$









### Extracted DK2 and DF2 Model 3



$$\varepsilon_{\infty} = 3.46724$$
 $\Delta \varepsilon = 0.170196$ 
 $m1 = 9.58715$ 
 $m2 = 14.8352$ 



$$\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon \cdot \frac{1}{m_2 - m_1} \cdot \log_{10} \left( \frac{10^{m_2} + i \cdot f}{10^{m_1} + i \cdot f} \right)$$
$$= \varepsilon_r \cdot (1 - i \cdot \tan \delta)$$





### **Extracted effective conductivity** *Model 3*



$$\sigma = 5.8 \times 10^7 \text{ S/m}$$
  
 $R_q = 0.324321 \,\mu\text{m}$ 







## Length- and frequency-scalable models can now be created.







### **Example 9: Scope application De-embedding to BGA interface**

 Measure transmitter waveform by oscilloscope at PCB, de-embed cable connector and PCB trace and vias and display waveform at BGA balls.







# Getting de-embedding S-param for scope measurement

Step 1: Measure 2x thru with equivalent electrical length



Step 2: Measure RL from PCB/package/chip (power-off)



 Step 3: Run ISD to get "in-situ" de-embedding S-param (with extrapolated DC for scope) up to BGA balls.





### Summary

- Accurate de-embedding is crucial for design verification, compliance testing and PCB material property (DK, DF, roughness) extraction.
- Traditional de-embedding methods can give noncausal errors in device-under-test (DUT) results if the test fixture and calibration structure have different impedances.
- In-Situ De-embedding (ISD) addresses such impedance differences through software instead of hardware, thereby improving de-embedding accuracy while reducing hardware costs.





#### Reference

- C.C. Huang, "Fixture de-embedding using calibration structures with open and short terminations," US patent no. 9,797,977, 10/24/2017.
- C.C. Huang, "In-Situ De-embedding," EDI CON, Beijing, China, 04/19 to 04/21/2016.
- C. Luk, J. Buan, T. Ohshida, P.J. Wang, Y. Oryu, C.C. Huang and N. Jarvis, "Hacking skew measurement," DesignCon 2018, 01/30 to 02/01/2018, Santa Clara, CA.
- H. Barnes, E. Bogatin, J. Moreria, J. Ellison, J. Nadolny, C.C. Huang, M. Tsiklauri, S.J. Moon, V. Herrmann, "A NIST traceable PCB kit for evaluating the accuracy of de-embedding algorithms and corresponding metrics," DesignCon 2018, 01/30 to 02/01/2018, Santa Clara, CA.
- J. Moreira, C.C. Huang and D. Lee, "DUT ATE test fixture S-parameters estimation using 1x-reflect methodology," BiTS China Workshop, 09/07/2017, Shanghai, China.
- J. Balachandran, K. Cai, Y. Sun, R. Shi, G. Zhang, C.C. Huang and B. Sen, "Aristotle: A fully automated SI platform for PCB material characterization," DesignCon 2017, 01/31-02/02/2017, Santa Clara, CA.





### To explore further...

- Visit www.ataitec.com
- Visit AtaiTec booth (#754) at DesignCon 2020.

### Thank you.



